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Liquid mixtures of nonpolar molecules are treated on the 
basis of a simple partition function affording an approxi­
mate, but satisfactory, representation of liquid state 
properties. Parameters characterizing the pure com­
ponents (specifically, the density, thermal expansion 
coefficient, and thermal pressure coefficient) are thus 
brought to bear on the analysis of properties of mixtures. 
Theoretical expressions for the "equation of state" 
contributions to the free energy, enthalpy, entropy, 
chemical potential, and excess volume are derived. 
The theoretical entropy of mixing in excess of the com­
binatorial, or "ideal," entropy depends on the reduced 
volumes of the two components and of the mixture; 
it does not vanish, in general, when the excess volume is 
reduced to zero, contrary to a tenet of regular solution 
theory. The treatment is applicable to mixtures of 
molecules differing in size. 

Introduction 

Traditional theories of solutions dwell exclusively 
on two aspects of liquid mixtures. One of these is the 
entropy associated with dispersion of the two molec­
ular species, or of their constituent elements in the 
case of complex molecules, among one another. A 
lattice model often serves as the device for estimating 
this "combinatorial" entropy. The other aspect re­
lates to the interactions between neighboring mole­
cules and, in particular, to the difference in the inter­
actions between unlike and like neighbor pairs. Treat­
ment of the properties of liquid mixtures has progressed 
little beyond the level of interpretation possible within 
the framework supported by these two considerations 
alone. 1^2 

The equilibrium properties of a liquid are strongly 
dependent on what may be loosely called its local struc­
ture, often expressed in terms such as packing density, 
free volume, or, more exactly, in terms of the radial 
distribution function. Inasmuch as this local struc­
ture depends on the forces between molecules and on the 
form and volume of the molecules, in general, it will 
change with the composition. This change in turn 
will be reflected in the thermodynamic properties of the 
mixture. Contributions of this nature have either been 
ignored altogether, or correction to a state of null 
volume change on mixing has been adopted as a 
means of compensating for the effects referred to.2 

By this device, the various properties of the mixture 
are altered by the changes they would sustain if the 
volume were adjusted to the value linearly interpolated 
between the volumes of the pure components. It will 
be apparent, however, that adjustment of one ther­
modynamic quantity (e.g., the volume) in this manner 
will not, in general, effect a simultaneous correction of 

(1) J. H. Hildebrand and R. L. Scott, "Solubility of Non-Electro­
lytes," 3rd Ed., Reinhold Publishing Corp., New York, N. Y., 1950. 

(2) J. H. Hildebrand and R. L. Scott,"Regular Solutions," Prentice-
Hall, Englewood Cliffs, N. J„ 1962. 

others (e.g., the free energy or that part of it relating to 
the local structure) to their linearly interpolated values. 
The choice of volume as the property to be "conserved" 
is arbitrary, and there is no assurance that nullity of 
volume change obviates consideration of other char­
acteristic properties of the liquid. 

More sophisticated treatments34 of liquid mixtures 
derive their conceptual basis from (a) the cell model 
for liquids and (or) from (b) the postulation of a uni­
versal form for the intermolecular potential expressed 
by eij = e*ijip(r\jjr*jj), where /^ is the distance between 
centers of molecules i and j , e*a and /•%• are character­
istic parameters for the pair, and <p(rjr*) is a universal 
function of its argument. The corresponding states 
approach, including conformal theory, proceeds from 
the latter of these premises.4 Insofar as giving account 
of experimental results is concerned, these approaches 
have failed to establish decisive advantage over treat­
ments recalled in the preceding paragraphs. Reasons 
therefore undoubtedly relate to limitations of the cell 
model and to severe departures from proposition b 
above for component molecules which differ appreci­
ably in size, shape, or composition. 

The definition of the cell, consisting of neighbor 
molecules in fixed array about the central "wanderer," 
erroneously ascribes crystal-like characteristics to the 
liquid. Each molecule is required to perform dual, 
mutually inconsistent roles: it must function both as a 
fixed neighbor and as the wanderer within its own cell. 
Thus, not only does the cell model incorporate the 
acknowledged deficiencies of the Einstein model for a 
solid, but it also fails to take account of those features 
which set a liquid apart from a solid. These short­
comings of the cell model have been stressed by Hilde­
brand and his co-workers.12 

By computing the mean intermolecular energy for a 
set of molecules in perfect array, each being assigned to 
the center of its cell, the cell model prescribes a de­
pendence on the volume which is too great. This 
error can be seen to be an inevitable consequence of the 
order implied by this model and would follow for any 
acceptable representation of the intermolecular energy 
for a pair of molecules. That the energy-volume 
relationship according to the cell model is at variance 
with experiment has been abundantly shown25 by 
analysis of (d£/dK) r coefficients. 

The intermolecular energy is usually discussed on the 
basis of the familiar Lennard-Jones potential operating 
between molecular centers. Even in comparatively 
simple polyatomic molecules, e.g., CH4 or CCl4, the 
acentric distribution of polarizable electrons neces-

(3) I. Prigogine, "The Molecular Theory of Solutions," North-Hol­
land Publishing Co,, Amsterdam, 1957, 

(4) J. S. Rowlinson, "Liquids and Liquid Mixtures," Butterworth and 
Co., Ltd., London, 1959. 

(5) R. L. Scott, Discussions Faraday Soc, 15, 44, 113 (1953); J. 
Chem. Phvs., 25, 193 (1956); H. Benninga and R. L. Scott, ibid., 23, 
1911 (1955). 
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sitates fairly drastic modification of this potential.2 

Kihara,6 Hamann and Lambert,7 and Pitzer8 have 
offered modified intermolecular potentials for poly­
atomic (globular) molecules, especially those approxi­
mating spherical symmetry in form. Pitzer replaces 
each molecule with a smooth distribution of inter­
acting elements (electrons), these being distributed 
uniformly either on the surface of a spherical core or 
throughout the volume of the core. In either case, a 
Lennard-Jones interaction is ascribed to each pair of 
elements, one from the distribution for each of two 
neighboring molecules, and the total interaction is 
obtained by integrating over the respective cores. 
The form of the potential is modified considerably by 
acentricity, irrespective of which of the two models is 
used. Both the attractive and the repulsive terms are 
rendered more steeply dependent on the distance be­
tween molecular centers,7~9 but to a degree which is 
highly dependent on the particular molecule. 

An extension of these considerations which suggests 
itself as a basis for treating the intermolecular energy 
in liquids consists in integrating the interactions of 
elements of the core of one molecule with the elements 
of all surrounding molecules, these latter being treated 
as a continuum occupying the space outside the cavity 
reserved for the molecule in question. The result 
obtained10 departs markedly from the form of the 
intermolecular energy according to the theory of 
Lennard-Jones and Devonshire. For a ratio of core 
to cavity diameters greater than 1I6, the energy is 
approximately proportional to the density; it depends 
also on a simple function of the cavity diameter. 
Inasmuch as the form of the potential depends on 
parameters peculiar to the molecular species, it does 
not lend itself to reduction to a parametric expression 
such as is required to sustain a law of corresponding 
states.10 Limitations11 of the corresponding states 
scheme advanced by Prigogine and co-workers3 are 
probably related to considerations of this nature. 

In the limit of very large particles such that the range 
of intermolecular interactions, attractive as well as 
repulsive, is small compared to the molecular diameter 
and to the distance between boundaries of the domains 
of neighboring molecules, the intermolecular energy 
can be treated as arising effectively from interactions 
between the surfaces of adjoining molecules. The 
calculations10 described briefly above support an 
account of the intermolecular energy on this basis, and 
they indicate further that this manifestly naive approxi­
mation should be satisfactory even for small poly­
atomic molecules such as CCl4. Certainly this ap­
proximation, which has a long history of usage in 
solution theory, is preferable to central force potentials 
of the Lennard-Jones type for virtually all molecules of 
interest. It offers the additional advantage of being 
adaptable to treatment of nonspherical molecules and of 
mixtures of molecules differing in size. 

Recently,12 we have explored the application of a 
comparatively simple partition function suitable for 

(6) T. Kihara, Rev. Mod. Phys., 25, 831 (1953). 
(7) S. D. Hamann and J. A. Lambert, Australian J. Chem., 7, 1 (1954). 
(8) K. S. Pitzer, / . Am. Chem. Soc, 11, 3427 (1955); K. S. Pitzer and 

G. O. Hultgren, ibid., 80, 4793 (1958). 
(9) See ref. 3, p. 259 ff. 
(10) Unpublished. 
(11) R. Simhaand A. J. Havlik.J. Am. Chem. Soc, 86, 197(1964). 
(12) P. J. Flory, R. A. Orwoll, and A. Vrij, ibid., 86, 3507 (1964). 

liquids comprising chain molecules to homologs of the 
normal paraffin hydrocarbon series, H-(CH2)„-H with 
n > 5. A coherent correlation of the properties of the 
pure hydrocarbons has been achieved, which, as it 
involves relationships expressed in algebraic form, is 
much to be preferred over the various corresponding 
states schemes which have been propounded.311 

The same partition function has been adapted to 
mixtures of the straight-chain hydrocarbons.13 Ther­
modynamic properties of these mixtures are thus re­
lated to parameters obtained from equation of state 
characteristics of the pure component hydrocarbons. 
The peculiar patterns of the excess chemical potentials 
and the excess enthalpies for these systems are well 
explained by the theory. Especially striking is the 
excellent agreement between calculated and observed 
chemical potentials for a variety of systems C„/Cm 

at different temperatures with arbitrary choice of a 
single parameter for all. 

The previous formulation12'13 was addressed spe­
cifically to chain molecules and to mixtures of chain 
homologs. Here we present a rendition for mixtures 
of molecules of unrelated types. One of the merits of 
the theory is its adaptability to mixtures of molecules 
differing in size and shape. Calculations performed 
to date encourage the expectation that it may be broadly 
applicable to mixtures of homopolar molecules.14 

The Partition Function and Equation of State 

Consider a one-dimensional system comprising N 
particles each of length /* distributed within a space of 
length L. Overlaps of particles are assumed to be 
excluded. Then as Tonks15 pointed out a number of 
years ago, the totality of configuration space available 
to the system is 

Q = (L- Nl*)N/N\ (1) 

= [(/ - l*)e]N (I ' ) 

where / = LjN is the space available per particle. 
The configuration integral for such a system can be 

written 

Z = / . . fexp[-E(x)/kT]dx (2) 

where x denotes the set of configuration coordinates 
. ^ i , ^ 2 , • • •, X \ i n the one-dimensional space, and 
dx = d*id.X2 • • • dx.v In accordance with con­
ventional procedure, let 

Z = Q exp ( - E0JkT) (3) 

where E0 is the "mean" intermolecular energy defined 
formally by eq. 2 and 3. By obvious extension of the 
argument to three dimensions, one obtains for a sys­
tem of spheres analogous to the one-dimensional 
particles considered15'16 

Z = [ye3(vl/* - v*'/3)3]N exp(-E0/kT) (4) 

where 7 is a geometric factor which establishes the 
connections (yv*)l/3 = /* and (yv)l/3 = I. The form of 
the result is equivalent to that given by the cell model. 

(13) P.J. Flory, R. A. Orwoll, and A. Vrij, ibid., 86, 3515(1964). 
(14) P. J. Flory and A. Abe, ibid., 86, 3563 (1964); see especially the 

following paper, A. Abe and P. J. Flory, ibid., 87, 1838 (1965). 
(15) L. Tonks, Phys. Rev., 50, 955 (1936). 
(16) O. K. Rice, J. Chem. Phys., 12, 1 (1944); ibid., 14, 348(1946): 
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The communal entropy1516 factor e3N is not, of course, 
included in the cell model treatment." 

With the objective of arriving at a formulation not 
limited to spherical molecules, and one which may be 
adapted to the treatment of mixtures of molecules 
differing in size, we define an element (or segment) 
as an arbitrarily chosen isometric portion of the mole­
cule. Its definition is otherwise left open for later 
specification in such manner as may prove most con­
venient in a given instance. Let there be r such ele­
ments, or segments, in a molecule. Following Prigo-
gine's treatment3,18 of "r-mer" chain molecules, we 
let 3c represent the number of external degrees of 
freedom per segment. Also following Prigogine, we 
assume the partition function to take the form 

Z = Zcomb[7(t;I/s - v*
l'y]'Nc exp(-E0JkT) (5) 

where Zcomb is a combinatorial factor which takes ac­
count of the number of ways of interspersing the rN 
elements among one another, without regard to the 
precise location of each relative to its chosen neighbor 
(this latter being within the province of the Tonks15 

estimation of Q). If it should be important to identify 
the communal entropy factor e3N, we may consider it 
to have been absorbed into Zcomb. In general, how­
ever, this factor along with yN will be lost in the process 
of differentiation involved in deducing the equation of 
state or in the taking of differences with respect to the 
pure components in treating mixtures. 

The device of modifying the exponent of the bracketed 
expression in eq. 5 by the factor c, where we anticipate 
defining an element in such a way as to render c ^ 1, 
is intuitive rather than rigorous. Its basis is equally 
obscure in terms of the cell model used by Prigogine.318 

The form of the result is plausible enough, but the 
literal significance of c should be regarded with caution. 

Prigogine and co-workers318 adhered to the cell 
model as a guide to formulation of the mean inter-
molecular energy E0. Quite apart from its intrinsic 
physical inconsistencies, the cell model is known em­
pirically to lead to an energy which depends much too 
steeply on the volume.5 We therefore reject this 
approach in favor of one suggested by considerations of 
the radial distribution function. The arguments for 
this preference have been eloquently presented by 
Hildebrand and Scott.12 They have shown that the 
energy is usually well represented by an expression of 
the form suggested by Frank19 

E0 = constant/ Vm 

where m may be treated as a constant, usually in the 
range of 1.0 to 1.5 for nonpolar liquids.20 In interests 

(17) The communal entropy is usually considered to be Nk, appar­
ently by analogy to a gas. Support for the larger communal entropy 
ONk) in the case of liquids has been clearly set forth by Rice.16 

(18) I. Prigogine, N. Trappeniers, and V. Mathot, J. Chem. Phys.,21, 
559, 560 (1953); Discussions Faraday Soc, 15, 93 (1953); I. Prigogine, 
A. Bellemans, and C. Naar-Colin, ibid., 26, 751 (1957); see also Chap­
ters XVI and XVII of ref. 3. 

(19) H. S. Frank, J. Chem. Phys., 13, 495 (1945). 
(20) Hildebrand and Scott's1,2 values of m rest on comparison of 

(dEidV)r = T(dpidT)v with the energy of vaporization, the latter of 
which represents the energy change for infinite expansion of the liquid. 
Their values of m reflect therefore the energy-volume relationship over a 
much greater range than that with which we shall be concerned. De­
partures of m from unity according to the method of Hildebrand and 
Scott do not necessarily imply a corresponding deviation within the 
normal range of density of the liquid. 

of restricting the number of parameters permitted, we 
takem = 1, and write 

E0 = —Nrsrjj2v (6) 

where s is the number of intermolecular contact sites 
per segment, r\ is a constant characterizing the energy 
of interaction for a pair of neighboring sites, and v is 
the volume per segment in accord with terminology 
used above. The choice of a reciprocal power of 
unity for v finds further justification in the fact that the 
treatment will generally be applied over only a limited 
range of volume. Application over wider ranges has 
been forfeited implicitly in the designation of c as a 
constant parameter. At the larger volumes char­
acterizing the liquid near its critical point, for example, 
the number c of intermolecular degrees of freedom 
must necessarily decrease. 

Also to be noted is the implication of eq. 6 that the 
intermolecular energy can be reckoned according to 
the number of contact sites or the area of contact. 
Short of an inordinately detailed accounting of cor­
relation interactions (London forces) between all inter­
molecular pairs of atoms in the interacting molecules, 
this should afford a good approximation for molecules 
of a complexity not less that that of methane, as was 
pointed out in the Introduction. 

The partition function expressed by eq. 5 resembles 
that proposed a number of years ago by Hirschfelder 
and Eyring.21 It differs from their partition function 
through introduction of the parameter c, whereby 
application to liquids comprising nonspherical mole­
cules is made possible. The reduced partition function 
which follows from eq. 5 and 6 

Z = Zcomh(yv*)ryc(vl/° - l)3rNc exp(rNc/vf) (7) 

and the reduced equation of state 

pv/f = vhj(vl/l - 1) - l/i'f (8) 

obtained from it are identical with those of the Hirsch­
felder and Eyring theory. Departures occur however 
in the definitions of the various reduced quantities. 
Changing from molecular to molar units per segment 
for v, v*, and 77, we have 

v = v/v* (9) 

f = TjT* = 2v* c RTJ si) (10) 

P = PIP* = 2pv**jsv (11) 

Thus 

p* = cRT*jv* (12) 

where 3c is the number of external degrees of freedom 
per element, or 

p* = CRT*/v* (12') 

where C — re and v* = rv* are the corresponding 
quantities per mole. The reduced equation of state at 
p = 0 is 

{v/a - Y)Ivh = f (13) 

The characteristic quantities v* and T* can be evaluated 
readily from the specific volume and the thermal ex-

(21) H. Eyring and J. O. Hirschfelder, J. Phys. Chem., 41, 249 (1937); 
J. O. Hirschfelder, D. P. Stevenson, and H. Eyring, J. Chem. Phvs., 5, 
896(1937). 
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pansion coefficient a as shown previously.1214 These 
quantities depend, of course, on the arbitrary specifica­
tion of an element or segment. The compressibility, 
a, or the thermal pressure coefficient, 7 = (dp/dT)v 

= a)K, serve to define p*. From v*, T*, and p*, the 
set of primary parameters v* (or v* = rv*), STJ, and c 
(or C) can be determined. 

That the theory presented is approximate cannot be 
denied. Its purpose, namely the treatment of liquid 
mixtures, precludes an elaborate scheme, and it is 
doubtful that a better representation of liquid state 
properties can be achieved without disproportionate 
sacrifice of facility of application. The formulation 
given should, at the very least, afford a substantial im­
provement in treating liquid mixtures over ignoring alto­
gether the characteristics of the pure components 
denoted by their equation of state parameters. 

Binary Mixtures 

The following analysis is confined to binary mixtures, 
the components being indexed by subscripts 1 and 2. 
The molecular element or segment is to be defined in 
correspondence for the two species such that rx and r2 

shall be in the ratio of the respective molar core vol­
umes v*! and v*2. Similarly, Si and S2 shall be in the 
ratio of the molecular surface areas of contact per 
segment. 

Let An, Au, and A22 represent the numbers of con­
tact pairs between the respective species, and let 
riiijv, etc., be the energies associated with each. Then 

-E0 = (AnVn + A22T]M + AnT]-L2)Iv 

Since 

2An + A12 = SIr1N1 

2^22 + Aw = s2r2N2 

it follows that 

-E0 = (SIr1N1T]11 + S^r2N2T)22 - A12AT])/2v (14) 

where 

Ar? = 77n + Ti22 — 27712 (15) 

Random mixing of the two species will be assumed. 
As a further approximation, we take the expectation 
that a species of kind / neighbors any given site to be 
equal to its site fraction 0;, defined for a binary mixture 
by 

B2 = 1 - Oi = s2r2N2lsfN (16) 

On this basis 

Au = S1TiN1B2 = s2r2N26i (17) 

where 

r = (T1N1 + T2N2)/N (18) 

s = (S1TiNi + S2T2N2)IfN (19) 

N = N1+ N2 

By substitution of eq. 16 and 17 in 14 

-E0/rN = (5/2̂ (017111 + S22T122 - B1Q2At]) (20) 

or 

-E0/fN = (SlIv)(Bi2T]1I + B2
2T]22 + 20102Ti12) (20') 

Defining the segment fractions pi and p2 by 

<p2 = 1 — <pi = T2N2JfN (21) 

we have 

I Ir = W i + Pj/r, (18') 

s = (P1Si + (p2s2 (19') 

B2 = (S2Js)(P2 (22) 

The characteristic pressures for the pure components 
(see eq. 11) are 

Pi* = S1T]1IJIv*2; p2* = S2T]22IIv*2 

By analogy, we define22 

Xi2 = SIAT]JIV*2 (23) 

Then 

-E0JrN = p*v*/v = ckT*/v (24) 

where 

P* = (PiPi* + (P1P1* - (PiB2Xi2 (25) 

c= (C1T1N1 + c2r2N2)/rN (26) 

= piCi + <p2c2 (26') 

On the basis of eq. 24, 25, and 26, the characteristic 
temperature T* for the mixture is given by 

1/r* = ((P1-PfIT1* + (p2p2*IT2*)((plPl* + 
(P2P2* - (P1B2Xi2)-

1 (27) 

where the characteristic temperatures T1* and T2* are 
defined in accordance with eq. 10. 

Adoption of the familiar Berthelot relationship1'4 

Vu = 0nn?22)v' (28) 

for homopolar species whose interactions are dom­
inated by the intermolecular dispersion energy leads 
to 

Ar? = (TTiI1/' - TT22
1/*)2 (29) 

X12 = Pl*[l - (SiIs2)
1^(P2*Ip1*)'^]2 (30) 

p* = [(pi0iA*)'A + ( M / ^ * ) v T (31) 

The intermolecular energy is given in terms of p* by 
eq. 24. It may be expressed alternatively (see eq. 
20') by 

-E0IfN = (SjIv)(B1Vn1'- + B2V22
1)2 (32) 

Equations 28 and 32 will not be incorporated in the 
subsequent development. Hence, the relationships 
which follow are not restricted to systems for which eq. 
28 is applicable. 

Enthalpy of Mixing. Ignoring the difference be­
tween the energy and enthalpy of a condensed system 
at low pressure, we have for the enthalpy of mixing 
(i.e., the "excess" enthalpy) 

AHM = £o(mixture) — .Eo(I) — E0(I) 
= fNv*[(fipi*/vi + (p2p2*lv2 — p*/v] (33) 

which is equivalent in form to the corresponding 
expression derived for mixtures of rc-alkanes.13 Equa­
tions given above allow this result to be expressed in the 

(22) It will be observed that Xn ?± Xn according to this definition. 
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alternative forms 

A # M = rNv*[<f>xpi*(.Vvi ~ l/«0 + <p2Pi*(\/v2 - 1/fl) + 
((P1B2JV)X12] (34) 

= N1PfVf(IJv1 - 1/0) + JVs*v8*(l/fc - 1/0) + 
(N1^OtIiS)X13 (34') 

The latter rendition is preferred for mixtures of mole­
cules comparable in size. 

The last term in each of these equations for the 
mixing enthalpy represents the contributions from 
contact interactions attributable to a difference between 
1,2 pairs and the mean of 1,1 and 2,2 contact pairs. 
It is the only term normally considered. We designate 
this term the contact interaction term. The terms pre­
ceding it in the mixing enthalpy expressions will be 
referred to as the equation of state terms. Their 
contribution depends on the reduced volume of the 
solution compared to those of the pure components. 
It may be quite large, sometimes dominating the 
contact interaction term. 

The equation of state terms may, if desired, be 
rearranged into two terms, one of which is proportional 
to the volume change on mixing, i.e., to Az)M = vE, 
the "excess" reduced volume.13 The other term de­
pends only on the difference between V1 and S2, being 
zero for S1 = S2; this term is independent of z»E. It is 
important to observe that the equation of state terms 
do not vanish for SE = 0, provided of course that 
V1 J* V2. 

The Residual Free Energy and Entropy. The con­
figuration partition function, eq. 5 (or in reduced 
form, eq. 7), is directly applicable to mixtures, subject 
merely to replacement of r by f, and to use of the mean 
values of s and c as prescribed by eq. 19 and 26. The 
reduced equation of state (8) is applicable without re­
vision. 

According to eq. 5 for the partition function and eq. 
34 for A//M, the free energy of mixing comprises a 
combinatory term AGcomb = ~TAScomb = —kT In 
Zcomb, a contact interaction term, and equation of 
state terms. Contributions of the equation of state 
and contact interaction terms are the ones of present 
concern. If the molecules of the two components are 
of comparable size and shape, then AGcomb should be 
given appropriately by the ideal mixing law, and the 
remaining terms may be identified with the excess free 
energy GE. Inasmuch as the present treatment is not 
intended to be so restricted, we require a quantity 
analogous to GE, but so defined as to represent the sum 
of the contact and equation of state terms without 
limitation on the nature of the combinatorial expres­
sion which may be appropriate for AScomb and, hence, 
for AGcomb. 

We therefore define the residual free energy GR 

as23 

GR = AGM - AGcomb (35) 

Obviously, GR is identical with GE if AGcomb can be 
represented by the ideal mixing law. If, however, the 
component molecules differ in size, at least one of 

(23) Rowlinson* has applied "residual" in another sense. We are 
constrained to commit this expropriation of a term previously used for 
another purpose in consequence of the seeming exhaustion of the bounti­
ful resources of the English language by the terminology of solution 
theory. 

them being a chain molecule, then AScomb may be ex­
pressed by polymer solution theory, i.e. 

AGcomb = - r A S c o m b = RT(N1 In <p, + W2 In <p2) (36) 

The definition of GR requires no revision in these cir­
cumstances. Other residual thermodynamic functions 
can be similarly defined. The residual free energy for 
binary mixtures is given according to eq. 7 by 

GR = 3fNv*\<p1pfT1 In [(Sf ̂  - \)l(vh - I)] + 
WfTt In [(Sf ̂  - I)I(H''' - 1)]} + AHM (37) 

Here, and in the equations which follow, the reduced 
temperatures T1 and T 2 could be expressed in terms of 
the respective reduced volumes S1 and S2 according to 
eq. 13. The number of variables appearing in the 
equations would be diminished by these substitutions 
but at the expense of more lengthy expressions. 

The residual entropy SR is implicit in the term in 
braces in eq. 37. It may be written alternatively as 

S^ = -3(NlPfvf T1IT)In^Sf h - \)l(vh - I)] -
2(N2p2*v2*T2/T) In [(S2* - I)I(H''' - I)] (38) 

According to these equations, the residual entropy will 
not vanish, in general, when the volume change on 
mixing is reduced to zero, i.e., for S = (P1V1 + <p2v2. 
This assertion is at variance with the concept of a 
regular solution12 as one whose entropy of mixing is 
ideal when its volume corresponds to the additive 
volumes of the components. The contribution of 
equation of state terms to the entropy depends on the 
reduced volume S of the solution, but it does not vanish 
in general for AvM = S — (Ip1S1 + Ip2S2) = 0 . As 
may be shown by numerical calculations, the magni­
tude of 5 R may be fairly large. 

The Chemical Potential and Related Partial Molar 
Quantities. The chemical potential of component 1 is 
given by Gu1 - (I1

0)/RT = (dAGM/djVOr,^,; apart 
from a trivial, pressure-dependent term from the com­
panion partial derivative of AGM with respect to v. 
By differentiation of eq. 37 followed by substitution 
from the equation of state (13) as applied both to the 
mixture and to the pure components 

(Mi - MtT = pf vf [3T1InKv1^ - I)I(S''' - I)] + 
(Sr1 - v-i)} + (VfX12IvW (39) 

Equation 39 is equivalent in form to the expression for 
the chemical potential in «-alkane mixtures,13 apart 
from the replacement of the segment fraction <p2 by 
the site fraction B2 in the last term. 

The partial molar enthalpy of dilution is 

HiR = H1 - H0 = pfvf[(vrl - V~l) + 

(OLTIV)(T1- T)IT]+ (VfX12Jv)(I + aT)62> (40) 

where T = TfT*, the characteristic temperature T* for 
the mixture being defined by eq. 27. The thermal ex­
pansion coefficient a appearing in this equation and 
those which follow is given according to the equation of 
state (13) by 

aT = 3(5'/l - 1)/[1 - 3 (vv' - I)] (41) 

The partial molar residual entropy is 

S1R = - A * V l * [(3T1IT)InKv1'/' - I)I(S1/' - I)] -
(CtIvXT1 - T)IT] + a(vf X12IvW (42) 
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Series expansion of the residual chemical potential 
leads to 

O, - ,U1O)* = (A^a1TjI + Y12) (PfV1* fa)?** + 

{2 Y12 (1 - S2Is1) + [2 Y12 + (1 - /J8T1*/Pl*Ts*)A] X 

(^a 1J) - (6aiJ + 4«!2r2 + 4Ct1
1T3X^ 3/9)} X 

WVSIV1)V*1 + . . . (43) 

where 

/f = (1 - T1*/T^)(P2*Ip1*) - (S2Is1)(X12Ip1*) (44) 

Y12 = (StIs1Y(X11Ip1*) (45) 

«i is the thermal expansion coefficient of pure com­
ponent 1 (see eq. 41). If S1 = s2, the coefficients 
simplify in eq. 43-45. 

Series expansions for the partial molar enthalpy and 
entropy may be obtained from eq. 43 by differentiation. 

The excess enthalpies, volumes, and entropies of 23 
equimolar binary liquid mixtures for which necessary data 
are available in the literature are interpreted according to 
the relationships presented in the preceding paper. Most 
of the mixtures comprise pairs of small globular molecules 
from the group C-C6H12, C6H6, C(CHt)1, CCh, SiCh, 
TiCl4, and SnCh or from the condensed gases CH4, 
Ar, O2, and N2. Also included are mixtures of C6H6 

and of C-C6H12 with n-hexane and n-heptane, the benzene-
diphenyl system, and two hydrocarbon-fluorocarbon 
mixtures. Previously unaccounted equation of state 
terms, which depend on properties of the pure compo­
nents, make important contributions to each of the excess 
quantities. Through use of pair interaction parameters 
chosen to achieve agreement with the observed excess 
enthalpies, excess volumes are calculated which agree in 
nearly all cases with those observed within limits set by 
experimental errors. Although excess entropies cal­
culated on the same basis tend to be somewhat lower than 
those observed, the agreement is favorable for most 
systems. Exceptions involve benzene as one component 
or cyclohexane in admixture with n-alkanes. Because 
account was taken of equation of state contributions, the 
present interaction parameters differ from those deduced 
from experimental results by previous procedures. 
Departures from the Berthelot geometric mean rule are 
discussed. 

Introduction 

In this paper we present an analysis of the experi­
mental excess thermodynamic functions VB, HB, and 
5 E for binary liquid mixtures of nonpolar molecules. 

Concluding Remarks 

Adaptation of the reduced partition function ex­
pressed by eq. 7 to mixtures and adoption of eq. 20 for 
the intermolecular energy on the assumption of ran­
dom mixing underlies the theory developed above. 

The expressions derived for the various residual (or 
excess) properties of a binary mixture involve a single 
parameter, X12, beyond those furnished by the properties 
of the two pure components. The thermodynamic 
properties (e.g., H, V, and S) are thus related explicitly 
to one another in terms of this parameter characterizing 
the given mixture. Treatment of mixtures of small, 
nonpolar molecules on this basis is demonstrated in 
the following paper.14 Application to polymer solu­
tions will be presented in a future communication. 
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The systems considered comprise pairs of molecules 
which (i) are small rather than polymeric, (ii) do not 
differ greatly in size, and (iii) in general are approxi­
mately spherical. The analysis is carried out on the 
basis of the relationships formulated in the preceding 
paper1 and, hence, serves to put to test the theory there 
set forth. 

A preliminary examination of experimental data for 
several representative systems in the category specified 
above was presented in a recent communication.2 

The results seemed to warrant an exhaustive investiga­
tion of mixtures of globular, nonpolar molecules. A 
wealth of experimental material is at hand for such 
systems,3 and we have accordingly undertaken to in­
clude in the present report an account of all of those 
for which the necessary data are available. Devia­
tions from ideality or from regularity are generally 
small for such systems, and this fact places greater 
demands on experimental accuracy and at the same 
time provides, in some respects, a more stringent test of 
theory. 

Treatment of excess properties according to the 
theoretical scheme set forth in the preceding paper1 

and elsewhere4'5 depends first of all on reliable equation 
of state parameters for the pure liquids. These com­
prise the molar volume v, the thermal expansion 
coefficient a, and the isothermal compressibility K, or, 
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